
Problem 1
Solve the eigenstates and eigenvalues for the transversal modes for two couple oscillators of mass m1
and m2 in the approximation of small angles. k12 is the spring constant between the two masses. The
other springs have spring constant k. The masses are m1 and m2. When calculating eigenvalues, feel
free to consider all k’s and m’s as equal.

Solution: (
m1ẍ1
m2ẍ2

)
=

(
−kx1 + k12(x2 − x1)
−kx2 − k12(x2 − x1)

)
(
m1 0
0 m2

)(
ẍ1
ẍ2

)
= −

(
k + k12 −k12
−k12 k + k12

)(
x1
x2

)
You can solve it the usual way but you also learned the following in the HW:

(M−1/2KM−1/2 − ω2I)y = 0, with y = M1/2x

If you take k12 = k and m1 = m2 = m,

ω =

√
3k

m
,

√
k

m

and the regular symmetric and antisymmetric eigenvectors.
The general solution is,

ω =

√
k + k12
2m1m2

∓ 1

2

√
k2(

1

m2
− 1

m1
)2 + 2kk12(

1

m2
− 1

m1
)2 + k212(

1

m2
+

1

m1
)2

Left out the eigenvectors as they look huge.

Problem 2
In this problem, we tackle a coupled oscillator (two degrees of freedom) with damping involved. As
you will see, the matrix notation we have been using to write and solve the EOMs for coupled linear
oscillators can be readily extended to a damped system.

The two carts in the figure above have equal masses m. They are joined by identical but separate
springs of force constant k to separate walls. Cart 2 rides in cart 1 as shows, and cart 1 is filled
with molasses, whose viscous drag supplies the coupling between the two carts. The drag force has
magnitude βmv where v is the relative velocity of the two carts.

a) Write down the equations of motion of the two carts using as coordinates x1 and x2, the
displacements of the carts to the right of their equilibrium positions. Show that the EOM can be
written in matrix form as

Iẍ+ βDẋ+ ω2
0Ix = 0

b) The next step is to “guess the solution form”. Let’s try normal mode form, but with a slight
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variation - just like you did with SHOs. Assuming that the drag force is weak (β < ω0 ), show that
you do get two solutions of this form with ω = iω0 or ω = β + i

√
ω2
0 − β2.

c) Describe the motions corresponding to each normal mode, using words or sketches. Also, explain
physically why one of the modes is damped but the other is not.

a)

m

(
ẍ1
ẍ2

)
=

(
−kx1 + βm(ẋ2 − ẋ1)
kx2 − βm(ẋ2 − ẋ1)

)

=⇒
(
ẍ1
ẍ2

)
=

(
− k

mx1 + β(ẋ2 − ẋ1)
k
mx2 − β(ẋ2 − ẋ1)

)

=⇒
(
ẍ1
ẍ2

)
= −

(
ω2
0 0
0 ω2

0

)(
x1
x2

)
− β

(
1 −1
−1 1

)(
ẋ1
ẋ2

)
=⇒

(
ẍ1
ẍ2

)
+ β

(
1 −1
−1 1

)(
ẋ1
ẋ2

)
+

(
ω2
0 0
0 ω2

0

)(
x1
x2

)
= 0

b) We use (
x1
x2

)
=

(
A1

A2

)
eωt

Therefore,
[ω2I+ ωβD+ ω2

0I]x = 0

This needs to be diagonalized before anything else can be done.

[ω2I+ ωβUΛU−1 + ω2
0I] = 0

where Λ =

(
0 0
0 2

)
, U =

(
1 −1
1 1

)
and U−1 =

(
1
2

1
2

1
2

1
2

)
Therefore,

[ω2U−1U+ ωβΛ+ ω2
0U

−1U] = 0

=⇒ [ω2I+ ωβΛ+ ω2
0I] = 0

Therefore,
ω2 + ω2

0 = 0, ω2 + 2βω + ω2
0 = 0

and

ω = iω0, ω = −β + i
√

ω2
0 − β2

c) Corresponding eigenvectors are
1√
2

(
1
1

)
,

1√
2

(
−1
1

)
The first eigenvector corresponds to the case when motion is symmetric and damping never comes into
play i.e. there is no relative velocity. In the antisymmetric case there is relative motion and damping is
present.

Problem 3
Find the normal modes for a double pendulum. Use the equation for Kinetic and Potential energy
and use the following formulas:

Mq̈ = −Kq, Mij =
∂2T

∂q̇i∂q̇j
|q=0 & Kij =

∂2U

∂qi∂qj
|q=0

When calculating the value of the eigenfrequencies, you can assume m1 = m2 = m and l1 = l2 = l.
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Solution:

We obtain the equations

x1 = l1 sin θ1

y1 = −l1 cos θ1

x2 = l1 sin θ1 + l2 sin θ2

y2 = −l1 cos θ1 − l2 cos θ2

=⇒

ẋ1 = l1 cos θ1θ̇1

ẏ1 = l1 sin θ1θ̇1

ẋ2 = l1 cos θ1θ̇1 + l2 cos θ2θ̇2

ẏ2 = l1 sin θ1θ̇1 + l2 sin θ2θ̇2

=⇒

ẋ1
2 + ẏ1

2 = l21θ̇1
2

ẋ2
2 + ẏ2

2 = l21θ̇1
2
+ l22θ̇2

2
+ 2l1l2 cos (θ2 − θ1)θ̇1θ̇2

Therefore,

T =
1

2
m1(ẋ1

2 + ẏ1
2) +

1

2
m2(ẋ2

2 + ẏ2
2) =

m1

2
(l21θ̇1

2
) +

m2

2
(l21θ̇1

2
+ l22θ̇2

2
+ 2l1l2 cos (θ2 − θ1)θ̇1θ̇2)
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and
V = (m1 +m2)gl1(1− cos θ1) +m2gl2(1− cos θ2)

Therefore,

M =

(
m1l

2
1 +m2l

2
2 m2l1l2

m2l1l2 m2l
2
2

)
, K =

(
(m1 +m2)gl1 0

0 m2gl2

)
Now, assuming (

θ1
θ2

)
=

(
A1

A2

)
eiωt

we get,

[Mω2 −K]

(
θ1
θ2

)
= 0

Using
det(Mω2 −K) = 0

and m1 = m2 = m and l1 = l2 = l.

ω1,2 =

√
g

l

√
2±

√
2

and non normalized eigenvectors are (
1

∓
√
2

)
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