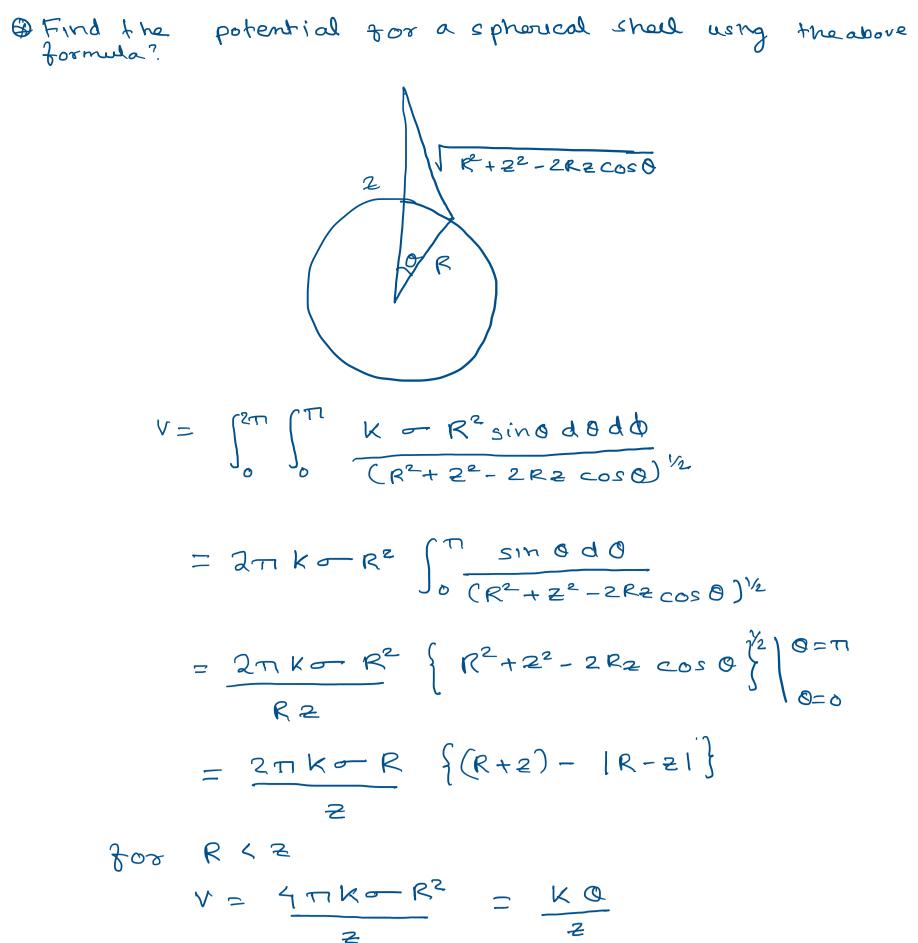
9:04 AM



$$for R > 2$$

 $V = 2\pi k - R 2/2$
 $Z = 4\pi R - k$
 $= k 0/R$

Re

(3) Earlier we had found that E at the center of hemispherical shell of radius & and charge density -

$$E = \pi k - \frac{1}{2} K - \frac{1}{2} \frac{1}{2$$

$$\int \sigma z \ll R$$

$$= 2\pi K - R^{2} \int_{0}^{T_{L}} \frac{(\sin \theta d\theta)}{R} \left(1 + \frac{z}{R} \cos \theta\right)$$

$$= 2\pi K - R \left[1 + \frac{z}{2R}\right] = K - \pi (2R + 2)$$

$$= 2\pi K - R \left[1 + \frac{z}{2R}\right] = K - \pi (2R + 2)$$

$$for \vec{E} = -\frac{\partial V}{\partial z} = -k - t$$

(2) Similarly, find E for disc with surface charge density -and radius R al- distance Z. $\phi = \int \frac{k \sigma^2 r \sigma dr}{(\sigma^2 + 2^2)^{\frac{1}{2}}}$ $= \int_{0}^{R} \frac{k\sigma dx}{(\kappa + z^{2})^{1/2}}$ Z $= 2 K \pi \sigma \left(R^{2} + z^{2} \right)^{1/2} - z$ $= \frac{\sigma}{2\xi_{-1}} \left[(R^{2} + z^{2})^{\frac{1}{2}} - z \right]$ $E_{z} = -\frac{\partial V}{\partial z} = \frac{\sigma}{z\varepsilon_{o}} \left[-\frac{z}{(r^{2}+z)^{Y_{z}}} + 1 \right]$

> For 2 > 0

We have two metal sphere of Radii R, and Rz for apart from one anothers compared to their Radii' Divide & perween the spheres to minimize this potential energy

$$U = \frac{kq_{1}^{2}}{2R_{1}} + \frac{k(Q-Q_{1})^{2}}{2R_{2}}$$

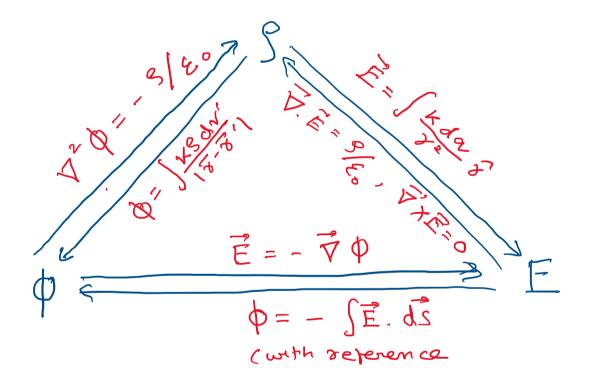
$$\frac{1}{2}\int S\phi dV$$

 $\frac{\partial V}{\partial q_1} = 0 = \frac{K q_1}{R_1} - \frac{K (Q - Q_1)}{R_2}$ $=) \quad \stackrel{q_{1}}{\swarrow} = (Q - q_{1})_{R_{2}}$

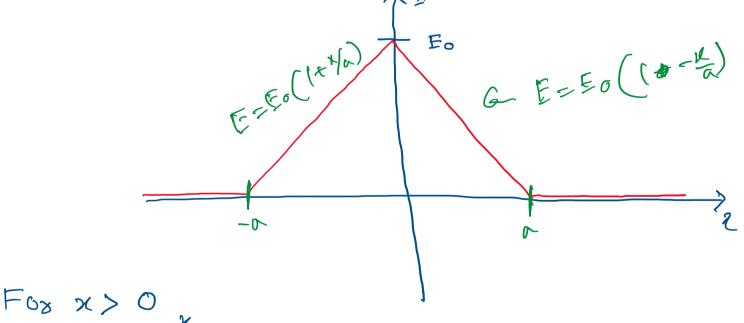
(do check for second derivative)

 \times \frown

Instead of discussing on divergence and cush more bhan what has been taught in the class, we will just review all that we have learn's a far.



Find the charge density and potential associated to the E in the figure below. E is independent of y and Z. Assume that $\varphi = 0$ at x = 0.



$$\begin{aligned}
\varphi &= -\int_{0}^{\chi} E(x) dx \\
&= -\int_{0}^{\chi} E(x) dx \\
&= E(x) dx \\
&=$$

For
$$n < 0$$

 $\oint = -\int_{0}^{\chi} E(x) dx$
 $= -\int_{0}^{\chi} E_{0} \left(1 + \frac{\chi}{\lambda}\right) dx$
 $= -E_{0} \left(\frac{\chi^{2}}{2\alpha} + \chi\right)$
 $\oint = \int_{0}^{\infty} \frac{E_{0} q_{2}}{(\chi^{2}_{2\alpha} + \chi)} , \quad -\alpha \leq \chi < 0$
 $E_{0} \left(\frac{\chi^{2}_{2\alpha}}{2\alpha} - \chi\right) , \quad 0 \leq \chi < \alpha$
 $-F_{0} q_{2} , \quad \alpha \leq \chi$
 $\int_{0}^{1} \frac{1}{2} \int_{0}^{1} \frac{1}{2} \int_{0}^{1}$

$$S = \left(-\nabla, \overline{E}\right) \varepsilon_{0}$$

$$S = \begin{cases} 0, x < -\alpha \\ \varepsilon_{0} \overline{E_{0}} \langle \alpha \rangle, -\alpha \leq x < 0 \\ -\varepsilon_{0} \overline{E_{0}} \langle \alpha \rangle, 0 \leq x < \alpha \\ 0, \alpha \leq x \end{cases}$$

$$\int_{1}^{1} \varepsilon_{0} \overline{E_{0}} \langle \alpha \rangle$$