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Problem 1

Consider a spherical shell with inner radius a and outer radius b. The shell is composed of a dielectric
material which is polarized such that P = %1“ for some constant k.

a

(
(b

Find the bound charge density and surface densities for this sytem.

Does this system have free charge densities? If so, find them.

(
d

)
)
¢) What is the electric field?
) Using the electric field, find the electric displacement field everywhere.
)

(e) Using the results of part (b), find the electric displacement field. Does this agree with your result from
part (d)?

Problem 2

Consider the interface of two linear dielectrics with permittivities ¢; and €;. An electric field, El, makes
an angle #; with respect to the normal vector of the interface. The electric field continues into the second
dielectric, now E5, making an angle 6 with respect to the normal vector of the interface.

(a) Find the electric displacement field and polarization vector for each dielectric.

(b) Using the boundary conditions for either the electric displacement field or the electric field, find expres-
sions relating the fields in the two dielectrics.

(¢) By combining these two expressions, find a single equation which relates the angles ¢, and 6, to the
permittivities €; and €5 without depending on the electric field strengh.

(d) Assume €; < e2. What happens to the electric field as it passes from the first dielectric to the second?
In the limit €2 — oo the second dielectric becomes a conductor. What happens to the electric field?



Problem 3

Consider a charge ¢ located a distance d above a block of linear dielectric material. This dielectric block
completely fills the bottom half space (z < 0) and extends infinitely in the z and y directions. The dielectric
has a permittivity € = ¢y (1 + xe)-

(a) Due to the point charge, the dielectric material will become polarized with polarization P. What is the
bound charge at the surface in terms of the electric field just below the surface of the dielectric?

(b) This bound charge induces an electric field both above and below the surface of the dielectric. What is

the electric field of the bound charge just below the surface? Leave this in terms of the bound charge
surface density.

(¢) Consider just the electric field from the point charge q. What is the electric field just below the surface
of the dielectric as a function of 77 What is the component normal to the surface?

(d) What is the total electric field just below the surface of the dielectric normal to the surface? Using your
results from part(a), find an expression for the bound charge as a function of r.

(e) What is the total induced bound charge on the surface of the dielectric, ¢,? (Hint: f(,x W(lr ='1)

(f) While we will not prove it here, we can use the method of images to treat the bound charge as being a
single point charge ¢, at (0,0, —d). Using the method of images, what is the force on the point charge
q?

(g) In the limit x,. — oo, the dielectric block becomes a conductor. Check that your results for parts (d)-(f)
agree with those for a conductor in this limit.



Solution 1

Consider a spherical shell with inner radius a and outer radius b. The shell is composed of a dielectric
material which is polarized such that P = %f' for some constant k.

(a) The bound charge surface densities are given by P - /i where # is the normal vector of the surface.
Considering the inner and outer surfaces of the spherical shell, we find,

Tinner = -ﬁ < (_7:) T
k

Uouterz-P'T:*

b
The bound charge density can be found by taking the divergence of P. This gives,

s LB gk
‘P*‘r—za(" ;)

Pbound = —

= <

(b) No free charges were specified for this system, only the polarization vector was given. Unless explicitly
added, polarized materials only have bound charges. As such, this system does not have any free charges.



(¢) The polarized material does not have a net charge. Thus, E = 0 for r < a and r > b. However, for
a <1 < b, we need to be concerned with the bound charges. Using Gauss’s law,

#E-M:/f Lav
J. J €0

,\

2 — 2 ne ’

47T607 E-r = 4ma Tinner +/ dm (7 ) pbounddr
a

Ameor’ B, = 4ma® (fﬁ) Jr/ Am (7")2 .k 5 | dr'
a a (?J)

dregr? B, = dmak — dxk (r — a) dr’
- k
B=——7
€Qr

(d) The electric displacement field is given by D = egE+P. Ashboth E and P vanish outside of the dielectric,
D also vanishes. Examining the inside of the dielectric,

D=gE+P
€T T
D=0

Thus, D=0 everywhere.

(e) In part (b), we found that there are no free charges in this system. Similarly, there are no changing
magnetic fields. As free charges and changing magnetic fields are what source D, it follows that D = (.
This is what was shown in part (d).

Solution 2

We will define the susceptibilities y; and x»2 in the usual way, € = ¢y (1 + x1) and €2 = g (1 + x2).

(a) Both dielectrics are linear. Thus, we have the usual relations,

5] = E]El 52 - EZEZ
131 = F70)(111‘3'1 132 = 60X2E2



(b) We will use the boundary conditions for the electric displacement field. There are two boundary condi-
tions which must be satisfied, Di- — Dy = 0 and D! — D! = PlH — PQH. Examining the boundary condition
for the perpendicular components,

Dy =Dy

€ ‘El cos(0)) = eg ‘Ez‘ cos (65)

Turning to the parallel components

D! -p)=p P

€1 ‘El sin (f1) — €3 ‘EZ‘ sin (A2) = egx1 |El‘sin (01) — eoxa |Eg| sin (#3)

€0 ‘El‘ sin (01) = e |Ez| sin (#2)

(¢) Dividing the boundary condition for the parallel components by the boundary condition for the perpen-
dicular components, we find

0 tan (6h) = 0 tan (6=2)

€1 €2
tan (6;) €
tan (62) e

(d) If e1 < ep then tan(#) < tan(fz). As 61 and 63 are bounded between 0 and %, it then follows that
#, < 0. As such, when the electric field passes into the second dielectric, it is deflected away from the
normal. In the limit e; — oo, this effect is maximized and the outgoing electric field now travels parallel

to the interface.

While it is unnatural in the context of infinite dielectric interfaces, if we have a finite dielectric block we
can talk about the penetration of the electric field into the dielectric. As ey increases, the electric field
cannot reach the inner most parts of a finite dielectric block before exiting through another surface. In
the limit where es — oc, the electric field is completely excluded from the interior of the dielectric and
only exists along the surface. This justifies the usual statement that there are no electric fields inside
conductors.

Solution 3

Consider a charge ¢ located a distance d above a block of linear dielectric material. This dielectric block
completely fills the bottom half space (z < 0) and extends infinitely in the z and y directions. The dielectric
has a permittivity € = €p (1 + x¢).

(a) As the dielectric is linear, P= fgerbd“W. For a polarization 13, the bound surface charge is given by
op = P - n. Thus, for the dielectric block,

—

op=P-2=exE""Y . 2

- EDX{:‘EESIDW

(b) To find the electric field produced by the surface charge density, we will make use of Gauss’s law. We



above below 4 _
Eebove g _ ghelow 4 _ Tb%

€0
Oy
_ZEEC‘.IOW — =0
€0
al O .
Ebclow = 2
26{)

(c) Consider just the electric field from the point charge g. For a point charge, the electric field is given by,
E = 4M‘;R1 R. Thus, the field just below the surface of the dielectric is given by, E' = R. The

normal vector for the dielectric surface is 2. Thus,

—
dmeq(r?+d?)

q

Ehelow s
2 dmeg (r?2 + d?)

cos (6)

Note that cos (0) = \/,fw Thus, we may rewrite the electric field as,

qd

Ehelnw o
e dmeq (r? + d2)3/2

(d) Combining our results for the surface bound charge and the point charge, the total electric field normal
to the surface just inside the dielectric is given by,
ay qd

Ehelnw s o
Z 260 471'6(] (T2 + d2)3/2

However, from part (a), we also know that epy. EP?Y = ¢,. Eliminating the electric field, we find,

g Oy qd

€0Xe B 250 47]’6() (7‘2 + d2)3/2

Solving for the surface charge density, we find,

b o B qd
= 2m \ 2+ x. (-r’2+d2)3’/2



(e) We can now find the total bound charge along the surface of the dielectric. Integrating over r, we find,

N | . d
:f ——( £ ) 2 573 2nrdr
o 2m \2+4xe/ (r2 +d2)¥
,_( Xe )q/-oo i ﬁ
B 2+x 2\3/2 d
/0 (1+(3)")
=l e
==\, < 19
2+ Xe 0 (].-I—.J\",‘Z)S/2
Qb:_( = )q
2+ Xe

(f) We now consider placing q, at (0,0, —d). The separation between g, and ¢ is then 2d. Thus, the force
on ¢ is given by,

F=_21
dmeg (2d)
2
F“ = ( Xe ) q 22
2+ Xe 47[60 (2d)

(g) Finally, we consider the limit y. — oo where the dielectric block becomes a conductor. Using our results

for parts (d)-(f), we find,

1 Xe qd i 1 qd
G5~ 5 im op=——————55
z 2r \2+xe/ (2 + d2)3/2 Xartco 2m (2 4 d2)3/2

Q'b:_( N )q lim g, =—q

24 xe Xe—+00

2 2

F:f( L ) 7__s lim F=——T 2

2+ Xe/ 4mep (2d) Xe—+00 dmep (2d)

Thus, we recover the correct expressions for a conductor when we take x. — oc.
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