
Quick discursion on Anal \& Prac Track
Back to doss

In the previous class we studied that SHM Occurs under
the potential of the form $U=1 / 2 k x^{2}$.
The generalized $x(t)$ for such a potential is
$x(t)=A \cos (\omega t+\delta)$
$\Rightarrow v(t)=-A w \sin (\omega r t+\delta)$ where $w=\sqrt{k / m}$
$\begin{aligned} & \therefore \text { Energy }(\text { mechanical })=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2} \\ &=\frac{1}{2} m \omega^{2} A^{2} \sin ^{2}(\omega t+\delta) \\ &+\frac{1}{2} k A^{2} \cos ^{2}(\omega t+\delta) \\ &=\frac{1}{2} k A^{2} \leqslant \text { energy at maximum } \\ & \text { distance }\end{aligned}$

$$
\begin{aligned}
& \text { omething s SHM, you can } \\
& 1 / 2 k\left(A^{2}-x^{2}\right)=1 / 2 m v^{2}
\end{aligned}
$$

For a damped harmonic oscillator wheres

$$
x(t)=C e^{-\beta t / 2} \cos \left(w^{\prime} t+\delta\right)
$$

$$
\begin{aligned}
& x(t)=\frac{\sqrt{C e^{2 / 2}}}{2} \cos \\
& E=\frac{1}{2} k c^{2} e^{-\beta t}
\end{aligned}
$$

Additionally, you can define Q factor for damped
oscillators

$$
Q \sim w_{0} / \beta
$$

Consider I release a mass in the following condition

$$
\Rightarrow F=-k x \Rightarrow w=\sqrt{k} k
$$

$$
\text { ii) } \frac{1}{2} k A^{2}=\frac{1}{2} k x_{0}^{2}+\frac{1}{2} m v_{0}^{2}
$$

$$
\Rightarrow A=\sqrt{x_{0}^{2}+\frac{m}{k} v_{0}^{2}}
$$

$$
\Rightarrow A=\sqrt{x_{0}^{2}+(\% / \omega)^{2}}
$$

(ii) $\begin{array}{rl}x(t) & =A \cos (\omega t+\delta) \\ v(t) & =-A \sin (\omega t+\delta) \\ A t & t=0 \\ x & =x_{0}\end{array}$ $v=v_{0}$ \qquad $\delta=\tan ^{-1}\left(\frac{v_{0}}{v_{0}}\right)$

$$
\begin{aligned}
& w t+\delta=\pi / 2 \\
& t=\pi / 2+\tan ^{-1}\left(v_{/ / x_{0} w}\right)
\end{aligned}
$$

9) Find the energy
bind
Find the
time
\qquad
So tar we have excluded any external during bocce
in tun s HM Who an- oscillator would be described by
$\Rightarrow m \ddot{x}+r \dot{x}+k x=f_{0} \sin (\operatorname{con})$
$\Rightarrow \ddot{x}+\left(\frac{x}{m}\right)^{\dot{x}}+\frac{x}{m} x=(z m) \sin (\cot)$
Any equation of the form has a solution:
$X(t)=c e^{-\beta t / 2} \cos (\omega, t+\delta) t A \sin (\omega t-\alpha)$
where $\omega_{1}=-\omega_{0}-\beta_{2}^{2} / 2$ where $w_{1}=\sqrt{\omega_{0}^{2}-\beta^{2} / 4} C_{\text {dies out }}$
$\begin{aligned} & \approx A \sin (\omega t-\alpha) \\ \text { where } A & =\frac{a_{0}}{\sqrt{(\beta \omega)^{2}+\left(\omega_{0}^{2}-\omega^{2}\right)^{2}}} \& \alpha=\tan ^{-1}\left(\frac{\beta \omega}{\omega_{0}^{2}-\omega^{2}}\right)\end{aligned}$

