Far mula Sheet 11:37 November 2019 (10:3

```
```

$\left.\begin{array}{l}\gamma=\sqrt{x^{2}+y^{2}} \\ \theta=\tan ^{-1}(y / x)\end{array}\right\}$ for a point $(x, y)$ in space

```
\(\left.\begin{array}{l}\gamma=\sqrt{x^{2}+y^{2}} \\ \theta=\tan ^{-1}(y / x)\end{array}\right\}\) for a point \((x, y)\) in space
\(\left.\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right\}\) for a point \((r, \theta)\) in space
```

$\left.\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right\}$ for a point $(r, \theta)$ in space

```
\(\ln 30\),

\(\vec{A} \cdot \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\) \(=|A||B| \cos \theta\)
\(\vec{A} \times \vec{B}=\left|\begin{array}{lll}\hat{\imath} & \hat{j} & \hat{b} \\ A_{x} & A_{y} & B_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|=\begin{aligned} & \left(A_{y} B_{z}-A_{z} B_{y}\right) \hat{\imath}+\left(A_{z} B_{x}-A_{x} B_{z}\right) \hat{\jmath} \\ & \\ & +\left(A_{x} B_{y}-B_{y} B_{z}\right) \hat{k}\end{aligned}\)
\(|\vec{A} \times \vec{B}|=|\vec{A}||\vec{B}| \sin \theta\)
Kinematics
A position in space is described by \(\vec{\gamma}\)
\(\vec{v}=d \vec{\gamma} / d t\)
\(\vec{a}=d \vec{v} / d t\)
\[
\text { For constant } \begin{aligned}
-a^{2}, & \begin{aligned}
v & =v_{0}+a t \\
x & =x_{0}+v_{0} t+\frac{1}{2} a z^{2} \\
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned} ~
\end{aligned}
\]
\(\vec{V}_{A B}=\vec{v}_{A}-\vec{V}_{B}\)
\[
\text { T verocity of } A \text { as observed by } B
\]

\section*{Neutonian Mechanics}

\section*{Steps}
\(\rightarrow\) Draw the \(F B D\) s
\(\rightarrow\) Write the equations
\(\rightarrow\) Solve.
\[
\begin{aligned}
& \vec{F} \text { ext }= M \vec{a}_{c M} \\
&{ }^{\text {L this }} \text { is the acceleration of centerof } \\
& \text { mass. }
\end{aligned}
\]

\section*{Gravity}
\(F_{G}=-\frac{G M_{m}}{r^{2}} \hat{\gamma}\)


Inside a mass shell,

Outside a mass shell, it acts as if the whole mas
is at the center.

Fictitious Forces
\[
\begin{aligned}
& \vec{F}^{\prime}=\vec{F}-{\underset{\sim}{c}}^{\text {morce }} \vec{a}_{0} \longleftarrow \text { macceler ot ation of non-inertial brame } \\
& T_{\text {force in non-mertial frame }}
\end{aligned}
\]


\section*{Energy}
\(E_{\text {mechancal }}={\underset{p}{k_{1} \text { netic }}}_{\frac{1}{2} m v^{2}}-\underbrace{\int_{x_{0}<x}^{x} F(x) d x}_{\text {potential energy }}\) energy
\(F_{x}=-\partial U / \partial x\)
\[
\hat{\vec{F}}=-\vec{\nabla} \cup \text { where } \vec{\nabla}=\frac{\partial}{\partial x} \hat{\imath}+\frac{\partial}{\partial y} \hat{\jmath}+\frac{\partial}{\partial z} \hat{k}
\]
\[
\Delta W=\int_{1}^{2} \vec{F} \cdot d \vec{s}=\Delta k \text { (Work Energs Theorem) }
\]
\[
d E / d t=\partial V / \partial t
\]
\(\vec{\nabla} \times \vec{F}=0\) (conservative forces)
Momentum
\[
\begin{aligned}
& \vec{p}=m \vec{v} \\
& \vec{R}_{C M}=\frac{\sum m_{i} \vec{r}_{i}}{\sum m_{i}}, M v_{c m}=\sum m_{i} \vec{v}_{i}, M A_{C M}=\sum m_{i} \vec{a}_{i} \\
& \text { Momentam is always conserved for } \overrightarrow{F e x t e x}=0 \\
& \operatorname{COR}(e)=\frac{V_{\text {rel }}^{\prime}}{\text { erelative veloaty of leaving }}
\end{aligned}
\]

\section*{Angular Momentum}
\(\vec{L}=\vec{\gamma} \times \vec{p} \leftarrow\) for a partide in motion
\(\frac{d \vec{I}}{d t}=\vec{Z}=\vec{\gamma} \times \vec{F}\)
Angular momentum is alway conserved for \(\vec{Z}_{\text {ext }}=0\)
```

