

Also,

$$
\begin{aligned}
\sin (x+y) & =\sin x \cos y+\cos x \sin y \\
\cos (x+y) & =\cos x \cos y-\sin x \sin y \\
\cos (2 x) & =\cos ^{2} x-\sin ^{2} x \\
& =2 \cos ^{2} x-1 \\
& =1-2 \sin ^{2} x \\
\sin (\pi-x) & =\sin x \\
\sin (\pi / 2-x) & =\cos x \\
\sin (-x) & =-\sin x \\
\cos (\pi-x) & =-\cos x \\
\cos (\pi / 2-x) & =\sin x \\
\cos (-x) & =\cos x
\end{aligned}
$$

Taylor Series
$f(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots$
Important Taylor expansions

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{j=0}^{\infty}(-1)^{j} \frac{x^{2 j}}{(2 j)!} \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\cdots=\sum_{j=0}^{\infty}(-1)^{j} \frac{x^{2 j+1}}{(2 j+1)!} \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{j=0}^{\infty} \frac{x^{j}}{j!}
\end{aligned}
$$

(You can derive $\cos x \& \sin x$ expansion using e^{x} epansion \& cuter's formula)
Euler's formula

$$
\begin{aligned}
& e^{i x}=\cos x+i \sin x \\
& \cos x=\frac{e^{i x}+e^{-i x}}{2} \\
& \sin x=e^{i x}-e^{-i x}
\end{aligned}
$$

